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Summary 

The technical objectives of this study were 

• A theoretical evaluation of the effects of angle of attack on leading edge noise 
from airfoils 

• To verify the theory in comparison with wind tunnel measurements made in a 
companion study at Virginia Tech 

The technical approach was to develop a theoretical procedure for calculating leading 
edge noise which addresses the differences found between current theoretical calculations 
and wind tunnel measurements of unsteady lift on airfoils in turbulent flow. The results 
have been compared with experiments carried at in a companion study at Virginia Tech 
by Dr. William Devenport. 

In the first part of this study the unsteady loading on an airfoil of arbitrary thickness was 
evaluated by using the generalized form of Blasius theorem and a conformal mapping 
that maps the airfoil surface onto a circle. For a blade vortex interaction the results show 
that the time history of the unsteady loading is determined by the passage of the vortex 
relative to the leading edge singularity in the circle plane. The singularity lies inside the 
circle and moves to a smaller radius as the thickness is increased, causing the unsteady 
loading pulse to be smoothed. The effect of angle of attack is to move the stagnation 
point relative to the leading edge singularity and this significantly increases the unsteady 
lift if the vortex passes on the suction side of the airfoil. These characteristics are 
different for a step^upwash^gust^vluclri^considered as a simplified model of a large 
scale turbulent gust. It is shown that the time history of the magnitude of the unsteady 
loading is almost completely unaltered by angle of attack for the step gust, but its 
direction of action rotates forward by an angle equal to the angle of attack, extending an 
earlier result by Howe for a flat plate in a turbulent flow to airfoils of arbitrary thickness. 
However spectral analysis of the gust shows that the high frequency blade response is 
reduced as the thickness of the airfoil is increased. 

The second part of this study considered the sound radiation from airfoils in a turbulent 
flow as a function of both thickness and angle of attack. The theoretical method for the 
response of a blade to an incoming gust developed in the first part of the study, or a 
boundary element method, was combined with a description of the turbulence spectrum 
to provide theoretical prediction of the radiated noise. The results were compared to wind 
tunnel measurements of the noise radiated from a number of different airfoils made as 

-part of a companion study at Virginia lech. It was concluded that the effect of angle of 
attack on the radiated noise is relatively weak but the effect of thickness is to reduce the 
radiated sound levels at high frequencies. 
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PART A: Unsteady Loading on an Airfoil of Arbitrary Thickness 

1. Introduction 

The unsteady loading on an airfoil caused by an incident gust is important in many 
applications and has received significant attention in the literature. The problem of a two 
dimensional flat plate airfoil in a uniform flow encountering a harmonic upwash gust was 
addressed by Sears [1]. Amiet and Sears [2] extended the solution to three dimensions for 
airfoils of large chord. Goldstein and Atassi [3] provided an asymptotic solution for a two 
dimensional potential flow over an airfoil of finite thickness, camber and angle of attack 
based on the assumptions of thin airfoil theory. Atassi [4] showed how this solution could 
be split into three independent terms that separated the effects of thickness, camber and 
angle of attack. Howe [5] gave a formula for the unsteady loading on a body of arbitrary 
shape based on a volume integral of a Greens function and the Lamb vector of the 
unsteady flow. He showed (Howe [6]) that, for a flat plate in a turbulent flow the 
unsteady lift was rotated forward as the angle of attack was increased. In Howe [7] it was 
shown that, for a stationary airfoil, the unsteady loading could be obtained using a surface 
integral over the body in which the integrand is a Greens function multiplied by the 
velocity induced by the vorticity in the flow. It was also shown (Howe [7-9]) that the 
unsteady loading is strongly affected by the application of the Kutta condition at the 
trailing edge of the airfoil. If the Kutta condition is not applied the time history of the 
unsteady loading exhibits a pulse as the gust passes the trailing edge. If the Kutta 
condition is applied, and disturbances in the wake are convectedatjhe speed of the mean 
flow, then the pulse generated as the gust passes the trailing edge is completely cancelled. 
By ignoring the trailing edge Howe [7] showed that the unsteady blade response 
approximated Sears function for non dimensional frequencies <r=o)b/U>\, where b is the 
semichord, U is the free stream velocity and co is the angular frequency of the unsteady 
load. Gershfeld [10] considered a turbulent gust incident on a flat plate of finite thickness 
and showed that the radiated sound was reduced at high frequencies as the thickness was 
increased. Similar results were obtained by Martinez and Rudzynsky [11] and Grace [12] 
for blade vortex interactions. Numerical methods such as the unsteady panel method 
described by Grace[12] or computational methods based on the Navier Stokes equations, 
as described by Lockard and Morris [13], have given the solution for the unsteady 
loading on airfoils of arbitrary shape. 

In this paper we will show that the unsteady loading on a two dimensional airfoil in an 
incompressible potential flow can he obtained using the: gp.npralJ7pH form nf RlasiiK 
theorem. The contribution of this approach is that it shows directly the physical impact of 
both thickness and angle of attack on the unsteady loading, without being limited by the 
assumptions of thin airfoil theory. It is shown that the characteristics of the response to a 
blade vortex interaction are quite different from the response to a step upwash gust. The 
blade vortex interaction is very sensitive to the effect of angle of attack, but this is not the 
case for a step gust. It is found that, for the step gust, the time history of the magnitude of 
the unsteady lift is almost unaltered by angle of attack, but its direction of action is 
rotated forward as the angle of attack is increased. This agrees with and extends Howe's 



[6] result for a flat plate to airfoils of arbitrary thickness. However spectral analysis of the 
gust shows that the high frequency blade response is reduced as the thickness of the 
airfoil is increased. 

2. Unsteady loading on an airfoil 

2.1 The unsteady flow 

The unsteady loading will be calculated for a gust incident on an airfoil at rest in a 
uniform mean flow. The fluid will be assumed to be inviscid, incompressible and two 
dimensional so the unsteady loading can be obtained from potential flow theory. The 
complex potential of the flow is defined as W(Z), (where Z=X+iY and (X,Y) represents a 
point in the physical plane), and can be obtained by mapping the airfoil surface onto a 
circle in the complex z-plane using the transformation 

(1) 
Z = (z-A) + (a-A)2/(z-A) (z-A) = Z/2 + ^Z2/4-(a-A)2, 

where a is the radius of the circle and X is a lengthscale to be defined below. For a 
Joukowski airfoil at an angle of attack a, in a flow with uniform speed U, the complex 
potential is given (see for example Acheson[14]) as 

(2) 

W0(Z) = w0(z) = Uze-° +^l-£.ln(r), 
Z Z7I 

where the airfoil chord is 4a2/(a+A) and its thickness to chord ratio is given by 
3^3A(a+AJ/(4a2) . For thin airfoils X«l the chord is approximately 4a and the blade 
thickness to chord ratio is 5.2X. The surface of the airfoil is defined by the circle of radius 
a in the z plane centered at z=0 and the trailing edge of the airfoil lies at z=a. To satisfy 
the Kutta condition the mean circulation about the airfoil is given by T = —4nUas'm a. 

To calculate the unsteady loading on the airfoil we will consider the incident gust to be a 
point vortex of strength y0 that is convected with the mean flow. Howe [8] has shown that 
the response of the airfoil to an incident vortex is equivalent to the harmonic gust 
problem considered by Sears [1] and Goldstein and Atassi [3]. These results assume 
Rapid Distortion Theory (RDT), (Batchelor and Proudman [15], Hunt [16], Goldstein 
[17]) which requires that the vortex is convected by the mean flow without being 
displaced by its image vortex inside the airfoil. This assumption cannot be applied for a 
vortex which is convected along the stagnation streamline upstream of the leading edge 
because the vortex will come rest at the stagnation point. However this is not realizable 
for a vortex with non-zero strength because the image vorticity will displace the vortex 
from the stagnation point and it will then be convected by the adjacent flow. The issue of 
gust distortion next to the stagnation point can lead to numerical errors for harmonic gust 
descriptions (Atassi and Grzedzinski [18]) but these are avoided by describing the 
incident gust as a point vortex providing it is not located precisely on the stagnation 
streamline. 



In this analysis we will assume Rapid Distortion Theory which requires that the vortex is 
convected by the mean flow along a streamline without change in strength and we will 
avoid the issue of gust distortion at the stagnation point by not placing a vortex on the 
stagnation streamline in numerical calculations. The vortex position is then relatively 
easy to calculate and will by specified as z0(t) in the circle plane. The velocity potential 
induced by the vortex and its image inside the circle is then 

(3) 

wf(z,t) = -!^\n(z-z0)+
l-^ln(z, 

In 2n 
•z)-'{±\n(z/z'0), 

where z/=a2/z0' is the location of the image vortex. The potential specified in (3) satisfies 
the non penetration boundary condition on the airfoil surface but does not satisfy the 
Kutta condition. This can be achieved by introducing a vorticity distribution in the wake 
downstream of the trailing edge which ensures that the unsteady velocity at the trailing 
edge is finite. If the potential induced by the wake is ww(z,t) then the unsteady Kutta 
condition requires that wv'(a,t)+w„'(a>t)=0> where the prime represents a derivative with 
respect to the complex variable z. The wake will be assumed to lie on the x-axis in the 
circle plane so the velocity potential induced by the wake is 

(4) 
_• /. 

,(^0 = f- J fi{T){\n{z-xvXt,T))-\n(x,{t,r)-z)}dT, vv 
2n 

where fj.(r). is the rate of change of vorticity-at the trailing edge at time r, x^t, x) is the 
location of the vorticity at time t generated at the trailing edge at time x and xi=c?/xw. 
Note that xw(t, x)> xw(x,x)=a+s when x<t and the small parameter e>0 ensures that the 
wake is initiated downstream of the trailing edge. To satisfy the Kutta condition we 
require that wv '(a,t)+ww '(a,t)=0 and using Eq. (4) we obtain 

(5) 

w'v(a,t) = — j //(r)  
2*^        \(a-xw)    (a-x,), 

dx 

Using Eq. (3) and Eq. (5) we obtain an integral equation for the vorticity in the wake as 
(6) 

\^) 
<x.+* 

\x»~aj 
dr = -y0\ 

a 
(z0-a)    (z'0-a) 

This integral can be solved by standard methods using Fourier transforms and will be 
discussed in more detail below. However it is worth noting here that /j(x) is real valued. 

2.2 The unsteady loading 

The unsteady loading on the airfoil can be calculated from the generalized form of 
Blasius theorem 



(7) 

Fx + iFY = 
2 

dw\ 
dZ) 

dZ ip^-4 W{Z)dZ, 
dtc 

where the contour integral is carried out over the surface of the airfoil. The first integral 
represents the contribution from the circulation and will be represented by (Fx+iFy)c. In 
steady flow the integral is evaluated (Acheson[14]) by expanding the contour onto a 
circle with a large radius and then using a Laurent expansion to represents the integrand. 
This leads to the conclusion that the load due to circulation is given by -ipnjexp(ia). 
However in unsteady flow the expansion of the contour to a large radius must take into 
account the vorticity in the wake and the presence of the vortex at Z0. The same contour 
at a large radius can be used but the result must be modified by adding the contributions 
from the vortex and the wake. Since the wake does not support a discontinuity in pressure 
the contour C used in both integrals in Eq. (7) can be extended to enclose the wake 
without changing the value of Fx+iFy. We can draw this extension from the suction side 
of the trailing edge, along the upper surface of the wake to a circular contour of large 
radius, and then along the lower side of the wake to the lower surface of the trailing edge. 
The contour must be indented to bypass the singularity at the vortex located at Z„. The 
circulation load can then be defined by the combination of two contour integrals as 

(8) 

lFx+iFr)e = 

The path C\ represents a circular contour of a large radius (but not so large that the 
starting vortex is inside the contour) centered at the origin, and the Cj contour integral 
can be evaluated using a Laurent series as before. The result will be given by the total 
circulation, including the contributions from the vortex and its images inside the surface, 
which sum to y<>,an^ the wake vorticity and its image, which sum to zero. The net 
contribution to the circulation load will be -ip(T+y0)Uexp(ia). The contour Q represents 
a contour around the vortex at Z0 and can be collapsed onto a small circle centered on the 
vortex location where we can represent the integrand as 

(9) 

dWY _ 

dZ) 

dWe{Z0) lYB 

\2 

dZ        2n(Z-Z0) 

where We(Z0) represnts the complex potential at ZB from all sources but the vortex itself. 
Using Rapid Distortion Theory implies that dWe(Z0)/dZ is well approximated by the 
steady flow at Z0 and so the integral over C2 yields a contribution to the circulation load 
of ipyoV(Z0). The net circulation load is then given by 

(10) 
(Fx +iFr)c =-ipTUe'a + ipy0{V(Z0)-Ue'a). 



The first term represents the steady load and the second gives the contribution to the 
unsteady load from the vortex attraction to the surface. 

The second integral in Eq. (7) represents the added mass which will be identified by 
(Fx+iFyJm- The integrand can be transformed to the z plane and the contour carried out 
over the circle representing the surface of the airfoil and the extension enclosing the 
wake, giving 

(H) 
,„      .£, . .   r dv(z,t) dZ , 

d     dz 

First we will consider the case when there is no wake, and the Kutta condition is not 
satisfied, so the only contribution to this integral is from the potential induced by the 
vortex (Eq. (3)), which gives 

(12) 

PYo 
2n J°-£ 

{a-Xf 1       dzn 1      dz, 
+ \ 

dz. 

(z-zB) dt      (z-Z,) dt     \z0   dt ) ^ 

'\ 
dz. 

Using the residue theorem to evaluate the integral and including the contributions from 
the second order pole at z=X and the simple pole at z=z/ gives the unsteady load due to 
the motion of the vortex as 

(13) 

(Fx
+iFy\=ip7o 

{d-Xf    dz, 

{z0-W\dt 

dz, 

~dt 
='pr0i 

(^^"T^rrfVflk, 
IZoT.WKdt) 

Y 

2   dt \Zo 

The time history of the unsteady loading described by Eq. (13) is clearly determined by 
the rate of vortex convection which can be specified using V(Z0) as 

(14) 
dz0 _ dz0 dZ0 _ V(Z0) 

dt     dZ0  dt      \-(a-X)2 /(z0-A)2 ' 

This has two peaks which occur when the vortex is at it's closest point to the leading or 
trailing edge singularities located at z0=2A-a and z0=a. The time history of the unsteady 
load given by Eq. (13) will therefore have a leading and trailing edge pulse, which can be 
conveniently identified by expanding the first term in F.q (13) using partial frartinns tn 
give 

(15) 
\2 

dz^ 
dt 

-(a-A)V(Z0) + (a-A)V(Z0) 

z„+a-2X z„-a 



The first term represents the leading edge pulse while the second term represents the 
trailing edge pulse. The magnitude of these pulses will be discussed in more detail in 
section 3. 

To calculate the unsteady loading we must also include the added mass induced by the 
wake, which can be obtained from Eq. (11) using 

(16) 

(Fx+iFy)  =-/>cf(l-^L)i^ 

where 
(17) 

Applying the residue theorem to Eq. (16) over the contour which encloses both the airfoil 
surface and the wake gives a solution which only depends on the simple poles at z=xw 

and z=xi. The unsteady load from the wake is then 
(18) 

2|<3c.. (Fx+iFX=ip\M{r)\l^\^-dz a 

The integral in Eq. (18) clearly depends on the rate at which vorticity is converted in the 
wake. There has been much debate (see Howe [9]) about the choice of convection speed 
and so we will proceed by allowing this to be a variable for the time being. In the Z plane 
the wake convection velocity will be assumed to be V(XW) and so the convection velocity 
in the z plane is 

dxw     dxw dXw V(XW) 
(19) 

dt     dXw   dt      \-(a-Xyi(xw-X) 

and it follows that 

t 
(20) 

fc+g;). ='PJM(T) 
ua2[    {xw-*yV{XJ 

dn. 
U  K\(Xw-Ay-(a-Ayj 

The unsteady loading is then given by the sum of Eq. (10), Eq. (13) and Eq. (20) which 
may be combined as 



(21) 

(Fx+iFy\=iPTt 

+ ip\M(r)V{Xw) 
xi\(xw-Xy-{a-A)1) 

dt 

The first term in Eq. (21) is easily calculated from the location and velocity of the vortex. 
The second term however depends on the time history of the wake vorticity and requires 
the evaluation of a convolution integral. It will be shown in the appendix how this can be 
carried out using Fast Fourier Transforms. 

Eq. (21) simplifies considerably for a flat plate at zero angle of attack for which 
V(Z0) = V(XW) = U and a=X~0, so using Eq. (14) gives 

k+^)=WR« 
.2      A 

zl-a1 
+ ipU \ p{i 

xl-a2 
dr. 

(22) 

Expanding both terms using partial fractions gives 

fc+i/O-rfry.E/Re 
^ 

yZo-a    zo+"; 
+ 

ipU '| 
j-M(r) 

rxw+a t s„_-aN 

vx„-a    xw+aj 

(23) 

dr. 

This shows that the vortex induces a pulse at z0=-a and z0=a but, by using Eq. (6), we see 
that the term dependent on (z0-a)~ exactly cancels the singularity of the convolution 
integral that occurs when xw=a. Combining Eq. (6) and Eq. (23) gives 

(24) 

z„+a\      2    I        U... +a) 
{Fx+iFy) = -ipy0aURe\ 

The first term represents the leading edge pulse and the second the contribution from the 
wake. It will be shown in the appendix that Eq. (24) reduces to the result that would have 
been obtained if the analysis had been carried out in the frequency domain using Sears 
function. — 

3. Discussion 

3.1 Results for aflat plate 

To verify the results given above we will first consider the case of a flat plate at zero 
angle of attack in a uniform flow for which the unsteady lift can be calculated using Sears 
function. Using Eq. (24) the unsteady loading can be split into two parts: the first is the 

10 



leading edge pulse given by the first term in (24) and the second is the wake pulse given 
by the second term in Eq. (24). The leading edge pulse is relatively simple to evaluate 
from the potential mean flow, but the wake pulse requires the evaluation of a convolution 
integral which is more involved. It is shown in the appendix how this can be solved using 
Fourier Transforms and an analytical solution is derived which reduces to the same result 

Fig. 1: The unsteady lift coefficient Ci(t)=L(t)/pUy0 for a vortex passing at a distance 4a/10 above a fiat 
plate,    o     leading edge pulse, —a— pulse induced by the wake, — sum of the two pulses. 

as would have been obtained by utilizing Sears function. The relative magnitude of the 
leading edge and wake pulses is illustrated in Fig. 1, which shows the unsteady lift 
L(t)=Fy(t) for a vortex passing a distance 4a/10 above a flat plate. The leading edge pulse 
clearly dominates and the wake pulse is only important as the vortex passes the mid 
chord point at time Ut/a=0. The vortex passes the trailing edge at time Ut/a=2 and both 
the leading edge and wake pulses show a sharp change in slope at this point. However the 
net effect is negligible as shown by the sum of the two pulses. The overall signature is 
dominated by the leading edge interaction, and the sharpness of the pulse depends on the 
distance of the vortex from the airfoil. 

The spectra of the time histories L{co) shown in Fig. 1 have been normalized by the 
upwash spectrum of the gust v{o)) (see Eq. (A5))and compared to Sears function in Fig. 



2 as a function of the non dimensional frequency a-2(oa/U . The plots show the non 
dimensional lift response function SL(co) =) L(o))/4npaVv(o))\. At non dimensional 
frequencies o>10 the spectrum of the leading edge pulse is identical to Sears function, 
but at lower frequencies it exhibits an oscillatory behavior and asymptotes to 0.5 for 
a«1. The magnitude of the contribution from the wake is also shown and this is clearly 

Fig. 2: Lift response function magnitude SL(a>) =| L(o))/4npaUv{eo) |  as a function of reduced 

frequency <yfor a flat plate showing the contribution of the wake (— •—) and the leading edge (dashed line 
 ). The total unsteady lift (the Sears function) is presented both as the theoretical calculation (o) and as 
the sum of the leading edge and wake response (solid line). Also shown is the high frequency 
approximation for Sears function (.—o—) 

only important at low frequencies (cr<J). The sum of the leading edge contribution and 
the wake contribution exactly matches the Sears function as shown. At low frequencies 
the leading edge and wake contributions are in phase and add to give a level which 
asymptotes to one. At non dimensional frequencies a~l the two terms are out of phase 
and the leading edge contribution is reduced by the wake contribution. It is also 
interesting to consider the high frequency approximation to the Sears function whose 
magnitude is given by lN2no. This is a good approximation at non-dimensional 
frequencies a>l but tends to infinity at low frequencies. In the frequency range 
l<a<10 it is a better approximation than the leading edge response in isolation. 

12 



The evaluation of the convolution integral in Eq. (24) can also be carried out numerically 
using Fast Fourier Transforms, as shown in the appendix. While this is not necessary for 
the flat plate, it will be required for an airfoil of finite thickness or at an angle of attack 
and so the accuracy of the numerical method needs to be established. Fig. 3 shows a 
comparison of the wake pulse calculated numerically and theoretically as a function of 
frequency. It is seen that, apart from the lowest frequency bin, the error in the numerical 
method is very small and should give accurate results when applied to different 
configurations. 

Fig. 3: Comparison between the lift response function St (ft>) =) L(a)) / 4n pa Uv(a)) | induced by the 
wake of a flat plate calculated numerically (dashed line) and using the theoretical formulation (solid line) 
given in the appendix. Note that errors are only significant at the lowest reduced frequencies. Number of 
points used in the transform is 8196 and the reduced frequency resolution is 0.0157.  

3.2 The effect of thickness and angle of attack 

To demonstrate the effects of thickness and angle of attack on the unsteady loading Fig. 4 
shows a calculation (using the approach described in the appendix) for a vortex passing 
an airfoil with a thickness to chord ratio of 0.15, at three different angles of attack. The 
results are presented as lift and drag components where the lift is given as the unsteady 
loading normal to the direction of the flow, L=imag((Fx+iFY)exp(-ia)) and the drag is in 

13 



the direction of the flow and given by D=real((Fx+iFy)exp(-ia)). The vortex is initiated 
at a point on a streamline which, at upstream infinity, would have been a distance equal 

U 

1.5 

1 

0.5 

-0.5 

r. 
(a)    • 

^0^^       \ " 

*^»» .<impiv«a 
• 

-5 0 
Ut/a 

Ut/a 

Fig. 4: (a) The unsteady lift coefficient Ci(t)^L(t)/pUy0 and (b) unsteady drag coefficient CD(t)=D(i)lpUy0 

for a vortex initiated at 10% of the chord above the stagnation streamline for airfoils at different angles of 
attack. Airfoil thickness to chord ratio is 0.15. Angle of attack:— Odeg, 5 deg, — •— lOdeg. 

to 10% of the chord above the stagnation streamline. The initiation point of the vortex 
should therefore be independent of the angle attack and thickness of the airfoil. Fig. 4 
shows that the unsteady lift can be represented by a pulse which peaks as the vortex 
passes the leading edge, but, as in the case of the flat plate, there is no apparent trailing 
edge pulse. The amplitude of the leading edge pulse increases with angle of attack. In 
contrast the unsteady drag exhibits a leading edge pulse which is negative causing 
leading edge suction which increases with angle of attack. When the vortex has passed 
the leading edge the drag is positive and decays slowly to zero as the vortex progresses. 

3.3 Response to a step function upwash gust 

An alternative gust type is a step upwash gust which can be represented by a sheet of 
vorticity normal to the direction of the incident flow at upstream infinity. In a uniform 
mean flow, and assuming Rapid Distortion Theory, the gust convects without modifying 
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itself and represents a step change in upwash velocity. The step gust, while unrealizable 
in practice, is a reasonable model for a large lengthscale turbulent gust, and the unsteady 
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Fig. 5: The unsteady loading coefficients CFL(t)=FL(t)/pUAva and CFD(t)=FD(t)/pUAva for a step function 
incident on an airfoil at angles of attack of 0 (solid line), 4 (dashed line) and 8 degs(dashed dot line). 
Airfoil thickness to chord ratio is 0.15. The direction of the force component FL (shown in (a)) is rotated 
forward from the lift force direction by an angle equal to the angle of attack, and the force FD is normal to 
FL. 

loading caused by a step gust will be indicative of the loading from the low wavenumber 
components of the turbulence spectrum. To model a step gust the vortex sheet is specified 
by the superposition of elemental vortices of strength y0=AvAh separated by the distance 
Ah where Av is the magnitude of the velocity jump across the step gust. To avoid 
numerical errors we need to ensure that a vortex is not placed on the stagnation 
streamline (see section 3.5 for numerical details). 

The unsteady loading from a step gust can be calculated using the approach described 
above by summing the contributions from each elemental vortex and the results are 
presented in Fig. 5. In this case we expect (from Howe [6]) that the effect of angle of 
attack on the unsteady loading will be to rotate the loading vector forward by an angle 
equal to the angle of attack. To illustrate this effect the results presented in Fig. 5 are for 
the forces relative to the direction of the loading suggested by Howe, which is rotated 
forward    by    2a   from    the    direction    of   the    chord.    This   gives   the    forces 
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Fi=imag((Fx+iFy)exp(-2ia)) and FD=real((Fx+iFy)exp(-2ia)). If Howe's theory for a 
flat plate applies to an airfoil of finite thickness then the pulses shown in Fig. 5 should be 
independent of angle of attack, which is clearly the case for FL . The force FD shows a 
small increase with angle of attack but this is smoothly varying and relatively 
insignificant. 

(a) 

Fig. 6: Vortex trajectories in the circle plane showing that they are almost identical in the leading edge 
region for all angles of attack if the leading edge stagnation points are aligned, (a) vortex trajectories at 
5deg angle of attack, (b) vortex trajectories at Odeg angle of attack, (c) Overlay of (b) onto (a) rotated 
clockwise by twice the angle of attack, (x) location of singular pint for zero angle of attack, (+)location of 
singular pint for 5 deg angle of attack 

An explanation of the effects which are taking place as the airfoil thickness and angle of 
attack are changed is given by Fig. 6 which shows the flow about the airfoil in the circle 
plane. For a step gust a vortex will be convectcd along each of the streamlines shown in" 
the figure and the amplitude of the leading edge pulse will depend on the distance of the 
vortices from the leading edge singular point which is located at 
z=-a+21, and shown in the figure by the small circle. The effect of increasing the airfoil 
thickness is to move the singular point to a smaller radius, which will cause the loading 
pulse to be smoothed. Fig. 6(a) shows the flow at an angle of attack, and Fig. 6(b) shows 
the flow at zero angle of attack. In Fig. 6(c) the stream lines from 6(a) have been rotated 
clockwise by an angle equal to twice the angle of attack, and overlaid onto the zero angle 

16 



of attack case. The trajectories of the vortices are now almost identical. For the angle of 
attack case the vortices on the upper (suction) side of the airfoil pass closer to the leading 
edge singularity than the vortices on the lower (pressure) side of the airfoil. For a blade 
vortex interaction, as considered in the previous section, the proximity of the vortex to 
the leading edge singularity is the dominant feature that affects the magnitude and shape 
of the unsteady loading pulse. When the blade is at a positive angle of attack a vortex 
passing above the blade will always cause a larger unsteady loading pulse than a vortex 
passing below the airfoil. In contrast, for a step gust Fig. 5 indicates that the increased 
contribution from the vortices on the upper side is offset by the reduced contribution of 
the vortices on the lower side, and this conclusion is only weakly affected by the airfoil 
thickness. 

3.4 Lift sensitivity diagrams 

Fig. 7 shows contours of the unsteady lift as a function of the physical coordinates of the 
vortex as it convects past the airfoil for three different thickness to chord ratios at an 
angle of attack of 8 deg. These pictures reveal the sensitivity of the airfoil to a vortical 
disturbance as a function of the position of that disturbance in the flow field. For the 
thickness to chord ratio of 0.15 the sensitivity reaches a maximum just ahead of the 
leading edge, at a point displaced about 3% chord ahead of the leading edge on the chord 
line. Closer to the airfoil surface the sensitivity drops considerably as the airfoil surface is 
approached. The plots for the thinnest and thickest airfoil show that the location of the 
maximum lift sensitivity moves away from the surface as the thickness increases. 
Unsteady drag sensitivity can be plotted in the same way (Glegg, Devenport and Staubs 
[19]) and are typically tme garter of those of the unsteady lift. The trailing edge does 
have a noticeable influence, locally distorting both the lift and drag contours (not shown). 

The same results are shown in Fig. 8 in terms of the initial vortex position Y/Ua and time 
Ut/a which are identical to the non dimensional drift coordinates of the flow (where Y is 
the mean flow stream function). These pictures show quite explicitly the effect of flow 
distortion on the response. In physical coordinates the point of greatest sensitivity appears 
ahead of the airfoil leading edge, on the suction side of the stagnation streamline. The 
same maximum appears at positive values of !Pin drift coordinates. Asymmetry is also 
introduced because of the way the distortion affects the relative timing of events on the 
upper and lower surfaces. Since the travel time of fluid passing to the suction side of the 
airfoil is significantly shorter than that of fluid passing to the pressure side, events 
occurring at the same physical position are dislocated in time across the streamline VM). 
A good example is the response features associated with the trailing edge, that are 
Significantly advanced on the suction side and retarded on the pressure side and thus are 
not phase aligned. 

Fig. 9 shows the same the lift sensitivity as a function of location in the circle plane for 
the different airfoil thicknesses. These also show how the peak lift sensitivity moves 
away from the surface as the thickness is increased. 
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Fig. 7: Unsteady Lift sensitivity plots for airfoils of thickness to chord ratios of 0.06, 0.15 and 0.24. 
Contours show the magnitude of the unsteady lift for each vortex location in the physical plane (X/a, Y/a). 

18 



Fig. 8: Unsteady Lift sensitivity plots for airfoils of thickness to chord ratios of 0.06, 0.15 and 0.24. 
Contours show the magnitude of the unsteady lift for each vortex location in drift coordinates (Ut/a, VAJd). 
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Fig. 9: Unsteady Lift sensitivity plots for airfoils of thickness to chord ratios of 0.06, 0.15 and 0.24. 
Contours show the magnitude of the unsteadyJiftfor each vortex location in the circle plane (x/a,y/a). 

Further insight into the sensitivity close to the leading edge is obtained by considering the 
leading edge pulse in more detail. Using Eq. (15) in Eq. (13) and retaining only those 
terms which are singular at z0=-a+2X gives 

(25) 

(F,+iFy\* -'PYc acV{Za) ft 
z„ +a„ 

az. 

\°cZoJ 

ocV{Z0) NVI 

z+a c    J 

where zc=z0-A. and ac=a-A. The unsteady lift from the leading edge pulse is then obtained 
by multiplying Eq. (25) by -iexp(-ia) and evaluating the real part so 

(26) 
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The velocity is given by 

V{Z0) = 
(l-a/z0)(l + ae2"'/z0)Ue-ia) 

{ l-(«c/*,)2 

(27) 
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In the leading edge region the function LLE is quite complicated with a second order pole 
at zc=-ac and a zero at the stagnation point z0=-aexp(-2iq). The influence of the 
singularity will dominate the lift sensitivity close to the leading edge, and so we can 
assume that when z0~-a we can approximate azc=acZ0, so 

(28) 

LLEX_PYJKKQ (l+e2 

a2\z+af ). 

The largest values of this function occur when the vortex lies on the real axis and if this 
function is evaluated for z0=x0 we find 

(29) 

Pr0U„ (a]{x0 + a)(l + cos(2ar)))X 

*^LE  ~ ' a2{x0+a-2Xf 

The function has a zero at x0=-a and by differentiating with respect to x0 we find it also 
has a maximum at x0=-a-2X, which is upstream of the leading edge and dominates the 
contour plots in Figs. 7,8 and 9. 

The interesting feature about the lift sensitivity plots is that they show the unsteady lift 
peaks as the vortex passes the leading edge, but if the vortex is too close to the leading 
edge the response is reduced. The maximum level occurs when the vortex passes at a 
distance 2X in front of the leading edge in the circle plane. The location of this maximum 
moves upstream and its magnitude is reduced as the thickness is increased. 

3.5 Unsteady lift spectra 

The spectral characteristics of the unsteady lift will be illustrated by taking the Fourier 
transform of the unsteady loading time history for the step function gust used in section 
3.3. The gust is generated by an array of equally spaced point vortices along a line which 
is initiated at 90 deg to the stagnation streamline at a point which is 30 chord lengths 
upstream of the center of the airfoil. The vortices are separated by 4a/100 and the 
minimum displacement from the stagnation streamline is 4a/200 (it is shown in [19] that 
the spectra converge when the minimum displacement of the vortex is less than 4a/100). 
To generate a step function the length of the vortex array should be infinite, but for the 
purpose of numerical calculations it is limited to 40a. The resulting upwash gust is 
plotted as a function of Ut/a in Fig. 10, and is seen to be a rather poor model of a step 
function, but it does include a step discontinuity at t=0. The spectrum of this gust is 
shown in Fig. 11 and it is seen to have a slope of Mco2 at high frequencies. Some care 
must be exercised when numerically evaluating spectra for time histories such as those 
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Figure 10: The upwash gust velocity for a vortex sheet of unit strength, which is used in the calculations of 
lift spectra. The upwash v(t)/Av is plotted as a function of non dimensional time Ut/a (Note airfoil chord is 
~4a) 

illustrated in Fig. 10. The spectra were calculated with 32784 points for signatures 
between -UT/a<Ut/a<UT/a with LT/a=240 and using a window function defined by 
cos2(/tf/7). The time history was also folded so that the discrete Fourier Transform was 
applied over 0<t<2Tto a periodic time sequence made up of repeated pulses. 

Fig. 12 shows the spectrum of the total unsteady loading P^(eo) =| FL{a>) f + | FD(a>) |2 for 
the airfoil with a thickness to chord ratio of 0.001 at 0,4 and 8 degrees angle of attack. 
Also plotted on this graph is the response obtained by multiplying the gust spectrum by 
Sears function. Fig. 12 shows that the spectra are independent of angle of attack, 
confirming our previous conclusions. The only exception is the 8 deg angle of attack case 
which deviates from the other results at reduced frequencies above 10. showing a slight 
decrease in level. Increasing the thickness reduces the rate of change in the gust time 
history and the high frequency loading response function is reduced as illustrated in Fig. 
13, for an airfoil with a thickness to chord ratio of 0.15. Comparing Figs. 12 and 13 
shows a reduction in level due to thickness, but the effects of angle of attack remain the 
same in each case. 
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Figure 11: The spectrum of the gust A v {(d) =| V (co)U I aAv |   used for the calculation of lift spectra as 

a function of reduced frequency cr. 

Fig. 12: Unsteady loading spectra A(to) =| FT (co) I pa Av |   as a function of reduced frequency crfor 
an airfoil with a thickness to chord ratio of 0.001 at angles of attack of 0 deg, 4 deg and 8 deg. — • — 
Spectrum based on Sears function. — Spectra for different angles of attack. 
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Fig. 13: Unsteady loading spectra A(ftj) =| FT(eo)/ pa Av\   as a function of reduced frequency erfor 
an airfoil with a thickness to chord ratio of 0.15 at angles of attack of 0 deg, 4 deg and 8 deg. — • — 
Spectrum based on Sears function. — Spectra for different angles of attack. 

Fig. 14: Unsteady loading spectra A(ftj) =| FT(a>)f pa Av |   as a function of reduced frequency a for 
airfoils with thickness to chord ratios of 0.001, 0.06, and 0.15 at an angle of attack of 8 degs. — • — 
Spectrum based on Sears function. — Spectra for different angles of thickness airfoils. Lower levels are 
thicker airfoils. 
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Fig. 14 shows the effects of thickness to chord ratio for an airfoil at an angle of attack of 
8 deg. In all cases the amplitude of the response decreases with increased thickness 
especially at high frequencies. It is interesting to contrast this result with its time history 
shown in Fig. 15. These show that the signature for the thinnest airfoil has the sharpest 
change of slope as the gust passes the leading edge, and so we would expect thickness to 
reduce the spectral level at high frequencies. 

Finally we note that the numerical results presented in this paper based on the analytical 
approach given in section 2, have been confirmed using a panel method (Glegg, 
Devenport and Staubs[19]). 

4. Conclusions 

The unsteady loading on a two dimensional airfoil in an incompressible flow has been 
evaluated for an airfoil of arbitrary thickness and angle of attack, without applying the 
assumptions of thin airfoil theory. It has been shown that the unsteady loading is 
dominated by the leading edge pulse and the application of the Kutta condition cancels 
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Fig. 15: The unsteady loading coefficients CFL(t)=FL(t)/pUAva and CrD(t)=Fr>(t)/p{JAva for a step function 
incident on an airfoil (see figure 5) for airfoils of thickness to chord ratios of 0.001(solid line), 0.06 (dashed 
line) and 0.15 (dashed dot line) at 8 deg angle of attack. 
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the pulse generated as the gust passes the trailing edge, extending previously known 
results for flat plates to airfoils of finite thickness and angle of attack. 

For a blade vortex interaction the unsteady loading depends on the passage of the vortex 
relative to the leading edge singularity in the circle plane. As the airfoil thickness is 
increased this singularity moves to a smaller radius, smoothing the pulse. When the 
airfoil is at an angle of attack the stagnation point is moved relative to the singularity and 
the unsteady loading pulse depends on whether the vortex passes the airfoil on the suction 
or pressure side. If it passes on the pressure side it will always be further from the leading 
edge singularity than if it passes on the suction side, and so the unsteady loading pulse is 
reduced. 

The characteristics of the unsteady loading are quite different for a step upwash gust, 
which is more representative of a large scale turbulent flow than a single blade vortex 
interaction. For a step gust the magnitude of the unsteady loading time history is almost 
unaltered by changes in angle of attack a but the direction of action of the force is rotated 
forward so that it makes an angle a with the lift direction. This extends the result 
obtained by Howe [6] for a flat plate in turbulent flow to an airfoil of arbitrary thickness 
subjected to a symmetric gust. However spectral analysis of the gust shows that the high 
frequency blade response is reduced as the thickness of the airfoil is increased. 

One of the most important applications of this theory is to airfoils in a turbulent flow. To 
extend the analysis to include a turbulent inflow a full three dimensional calculation must 
be carried out and the effect of chopping of the vortex lines normal to the plane of the 
airfoil must be considered. In addition, the spanwise correlation length scale of the 
turbulence must be included. These issues are considered in [20]. 

Appendix A: Numerical Evaluation 

The unsteady loading is given in Eq. (21) as the sum of the loading from the vortex 
motion, given by 

(Al) 

+ V(Z0)-Ue'° 'Pic 
{a-A) <k„ 

K*l dt (20-X)\dt 

and the unsteady loading from the wake given by 
-(A2)- 

ip\M(r)V(Xw) (xw-X)2 

x2
wUxw-A)2-(a-Ay 

For a vortex in a potential mean flow specified by Eq. (2) it is relatively straight forward 
to determine the vortex position za(t) and velocity dzjdt and hence evaluate (Al) to 
obtain the time history of the unsteady loading due to vortex motion. For the wake 
induced load given by (A2) the main difficulty is caused by the complexity of the 
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integrand in the convolution integral. To obtain a solution we first assume that the 
convection velocity of the vorticity in the wake is equal to the mean flow velocity at the 
trailing edge so V(Xw) = VTE=(l-A/a)Ucosa. Then using Eq. (1) we can define the location 
of the vorticity in the wake as 

(A3) 

Xlv(t,r) = 2{a-A) + (t-T)VTE xw{t,T)=A + Xw(t,T)/2 + TJ(Xw(t,T)/2)2-(a-Z)2 

The integral in Eq. (A2) may then be defined as 

ip\ Kr)q{t-r)dT q(t) = Vn 

(A4) 

(*„-^)2 

x2
w](xw-Ay-{a-Xy 

Using Fourier transforms with the notation convention 

/(*>) = :M f{t)e'adt 
2n_ 

r=0 

(A5) 

gives Eq. (A4) as 

•U 2nip } fi(c0)q(a))e to*dco. 

(A6) 

To evaluate the vorticity distribution in the wake we use Eq. (5) with vv(t)=mv '(a,t) so 
(A7) 

fro)) g(t) 

We can evaluate the Eq. (A6) numerically by combining it with Eq. (A7) and using 
discrete Fourier transforms based on the Fast Fourier Transforms algorithm. However 
some care has to be used in this numerical calculation because both q(t) and g(t) have a 
singularity of order tin at t=0.  Accurate numerical approximation of the integrals was 
achieved by ensuring that the numerical series representing q(t),g(t) and vv(t) were the 
same length, used the same time step and satisfied the causality condition. The discrete of 
the time histories were therefore chosen as 

^ JO nAt<T (O nAt<T 
-v—— v (nAt — T)—g —i a =n  

" [g{nAt-T)    n&t>T      *"     [q{nAt-T)    nAt>T 

where 1 < n < N and the time histories are defined at equal intervals At. The number of 
points in the sequence is ,/V and must be a power of 2, so choosing T=(N+l)At/2 ensures 
that g(t) and q(t) are not evaluated at t=0. Numerical evaluation of Eq. (A6) was then 
obtained using 

(A8) 
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where DFT and IDFT represent discrete forward and inverse Fourier transforms used so 
that their sign conventions are the same as used in Eq. (A5). A smoothing function s„ is 
required to prevent truncation errors at the end points of the integral and 
s„=cos2(n(nAt-T) /2T) was found to be effective for this purpose. 

Analytical solutions can be obtained for the special case of a flat plate at zero angle of 
attack. The vortex passes a distance h above the plate and is uniformly convected at the 
free stream velocity U. The Fourier transform of the wake vorticity is obtained (Howe 
[8]) as 

(A9) 

*       ia(H^\(T) + iH\l\a)) vV 2nU 

where o=2(oa/U and J„ and Hn
(,) represent Bessel and Hankel functions of the first kind 

of order n. 

The spectrum of the unsteady lift L(t)=Fy(t) can be obtained from Eq. (24) and is 
specified using Fourier transforms as 

(A 10) 
L{co) = -pU{yJ(+\<o)l2 + 2mco)q{co)) 

«•) = i 1 [^A-<"dt = =£ {[/i< V) - iH«(«D]r* } 

It may be shown that, by introducing Eq. (A7) and using the Wronskian of the Bessel 
functions, Eq. (A8) reduces to the lift spectrum which would have been obtained by using 
Sears function directly, with the upwash gust specified by the vortex as it is convected 
past the plate. 

References 

[1] Sears,W. R. Some aspects uf non-stationary airfoil theory and its practical ~ 
applications. Journal of the Aeronautical Sciences 8 (1941) 104-108 
[2] Amiet, R., Sears,W. R. The aerodynamic noise of small-perturbation subsonic flows. 

Journal of Fluid Mechanics 44 (1970) 227-235 
[3] Goldstein, M. E., Atassi, H. M. A complete second order theory for the unsteady flow 
about an airfoil due to a periodic gust. Journal of Fluid Mechanics 74 (1976) 741-765 
[4] Atassi, H. M. The Sears problem for a lifting airfoil revisited new results. Journal of 
Fluid Mechanics 141 (1984) 109-122 
[5] Howe, M. S. On unsteady surface forces, and sound produced by the normal 

28 



chopping of a rectilinear vortex. Journal of Fluid Mechanics 206 (1989) 131-153 
[6] Howe, M.S.,Correlation of lift and thickness noise sources in vortex airfoil 
interactions, Journal of Sound and Vibration, 137(1990) 1-7 
[7] Howe, M.S., Unsteady lift and sound produced by an airfoil in a turbulent stream, 
Journal of Fluids and Structures, 15 (2001) 207-225 
[8] Howe, M. S. The influence of vortex shedding on the generation of sound by 
convected turbulence. Journal of Fluid Mechanics 76 (1976) 711-740 
[9] Howe, M. S. Acoustics of Fluid Structure Interactions Cambridge University Press, 

Cambridge, 1998 
[10] Gersfeld, J., Leading edge noise from thick airfoils in turbulent flows, Journal of the 
Acoustical Society of America 116(2004) 1416-1426 
[11] Martinez, R. and Rudzinsky, J., Analytic evaluation of shape effects on blade vortex 
interactions, Cambridge Acoustical Associates Report U-2466-402.14, 1997. 
[12] Grace S M, Unsteady Blade Response: The BVI Model vs. the Gust Model, 
Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference, Maastricht, may 2001, 
AIAA paper no 2001-2209 
[13] Lockard,D.P. and Morris, P.J. Radiated Noise from Airfoils in Realistic Mean 
Flows, AIAA Journal, 36 (2001) 907 
[14] Acheson, D.J., Elementary Fluid Dynamics, Clarendon Press, Oxford, 1990 
[15] Batchelor G K and Proudman, I, The effect or rapid distortion on a fluid in turbulent 
motion, Quarterly Journal of Mechanics and Applied Mathematics, 7 (1954) 83-103 
[16] Hunt J C R, A theory of turbulent flow around two-dimensional bluff bodies. 

Journal of Fluid Mechanics, 61 (1973) 625-706 
[17] Goldstein M E, Unsteady vortical and entropic distortions of potential flows around 
arbitrary obstacles, Journal of Fluid Mechanics, 89 (1978) 433-468 
[18] Atassi, H.M. and Grzedzinski, J.,Unsteady disturbances of streaming motions around 
bodies, Journal of Fluid Mechanics, 209 (1989) 385-403 
[19] Glegg, S, Devenport W., and Staubs J., Leading Edge Noise Proceedings of the 13th 
AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, May 2006 AIAA Paper no 
2006-2424-345 
[20] Glegg, S, Devenport W., and Staubs J., Sound radiation from three dimensional 
airfoils in a turbulent flow Proceedings of the 46th AIAA Aerospace Sciences Conference, 
Reno, NV, January 2008, AIAA Paper no 2008-0052 

29 



PART B: Sound Radiation from Three Dimensional Airfoils in a Turbulent Flow 

1.0 Introduction 

The broadband noise from fans in turbomachinery is often dominated by the effects of 
unsteady loading caused by the response of the blades to a turbulent inflow. This is 
referred to as leading edge noise. For example, this mechanism dominates broadband 
rotor stator interaction noise, and is also important for low speed fans. The prediction of 
leading edge noise in low speed fans is directly related to the unsteady loading on the fan 
blades, and so a clear understanding of how this is affected by airfoil thickness and angle 
of attack is important for the optimization of blade sections for low noise. In this paper 
we will consider the unsteady loading on fan blades and show how it may be predicted 
for blades of arbitrary shape using a boundary element method. 

The use of boundary element methods to calculate unsteady loadings in the time domain 
is not new. There have been multiple studies that have considered this approach but they 
have focused on blade vortex interactions (Rockwell[l], Grace[2]). However when the 
unsteady inflow cannot be readily described by a compact vortex most authors have 
opted to use a frequency domain analysis in which the incident disturbance is specified 
by a harmonic gust (for example: Amiet[3], Atassi[4], Kerschen and Myers[5], Howe[6], 
Gerschfeld[7], Lockhard and Morris[8]). These studies have used both analytical and 
numerical methods to consider the effect of both thickness and angle of attack on the 
radiated noise but only those which can be reduced lo relatively simple analytical 
expressions[3,6,7] have been extended to turbulent inflow gusts. A discussion of the 
differences between the use of a time domain method based on blade vortex interactions 
and analyses based on harmonic gusts is given by Grace[2], who concludes that boundary 
element methods have a number of advantages over harmonic gust approaches but that 
they are more difficult to apply to turbulent flows because of the problems of modeling 
the turbulent inflow with a set of discrete vortices. In this paper it will be shown how this 
problem can be overcome by re-formulating the boundary element method in terms of the 
stagnation enthalpy which can be defined as the rate of change of a velocity potential. 
Results will be given for the unsteady loading on blades of different cross section and at 
different angles of attack and the calculations will be compared to wind tunnel 
measurements of the radiated noise levels for a number of different airfoils. 

2.0 Numerical Approach 

Boundary element methods for problems in incompressible flow are usually (Katz and 
Plotkin[9]) based on the solution to Laplace's equation applied to the velocity potential. 
For unsteady flows the incident gust is specified by its vorticity and the Biot Savort law is 
used to give the gust velocity incident on the blade surface. The gust is convected using 
the solution to the vorticity equation, and can include non-linear interactions between the 
vorticity and the local unsteady flow. However for three dimensional gusts the stretching 
of the vorticity by the mean flow can lead to numerical issues close to the blade surface 
where the stretching and vortex strength amplification are large. To overcome these 

30 



issues we will re consider the boundary element method by starting with Crocco's form 
of the momentum equation 

(1) 

— + W? + coxv = 0 a 

where v represents the flow velocity, B the stagnation enthalpy and co the vorticity. All 
variables are a function of time / and their position x. It is convenient to relate the 
stagnation enthalpy to a velocity potential <p, and the local pressure/? using 

(2) 
_^        dp_  rw 

a dt~P Dt 

Consequently if we can solve for the velocity potential q> on the surface of the blade we 
can use (2) to obtain the local surface pressure, the unsteady loading and the radiated 
noise. Taking the divergence of (1) for an incompressible flow gives 

(3) 
V2g> = V.(o) x v) 

A solution to this equation is obtained using a standard approach for a flow field in the 
presence of a stationary surface specified by the function Xx)=05 (with/<0 inside the 
surface), as 

(4) 
as nr, <.   f •, ^aj q*x)H<J) = J (oxv),^-dV(y)+ J p(y) — n,dS{y) 

where Ve is the volume exterior to the surface 5" on which f=0, and G=l/(4x\x-y\) is the 
free field Greens function. On the left of the equation H(fi represents the Heavyside 
function so for points inside the volume the left hand side of this equation is zero. 

A boundary element method can be specified using, for example, the approaches given 
by Kate and PIotkin[9] to solve this equation. We have chosen to use collocation points 
inside the surface and specify rectangular panels on the surface of the airfoil. The panels 
are distributed according to the approach given by Katz and Plotkin[9] and equally 
distributed along the span. The panel strength, which defines the function q> on the 
surface, is assumed constant for each panel and varies in time as the source term, given" 
by the volume integral in (4), evolves. The unsteady surface pressure is then obtained 
from equation (2) and integrated over the surface to obtain the rate of change of unsteady 
loading, which is integrated over time to obtain the time history of the unsteady lift. 

To satisfy the Kutta condition vorticity must be shed from the trailing edge of the blade. 
This is modeled by discrete vortex elements for each spanwise trailing edge panel. The 
shed vorticity is introduced at a location which is a distance eVjE^t downstream of the 
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trailing edge where VTE is the trailing edge velocity, At is the time step and e is optimized 
to eliminate trailing edge pulses. 

To apply this method to turbulent flow we need to consider the source term given by the 
volume integral in some detail. This depends on the Lamb vector (co x v), which 
simplifies considerably if Rapid Distortion Theory and a two dimensional potential mean 
flow are assumed. In this case the Lamb vector reduces to 

(5) 
(OxvatoxU = ((D.n)£7z + «3t/n 

where n and z are orthogonal unit vectors in the direction normal to the local flow 
velocity and in the spanwise direction respectively. 

The transport equation for the vorticity is given by the vorticity equation, which can be 
linearized about a potential mean flow to give 

(6) 

^-co.VU = 0 
Dt 

The solution to this equation can be obtained in terms of the drift coordinates X< which 
are solutions to the differential equation 

(7) 
D. «(X-u(oo)o = o 
Dt 

The solution to (6) in terms of drift functions takes the form 

(8) 
dxi 

ax, 

where o)(p = fi)j'l)(X-U,")0 is the vorticity in a volume VT which lies well upstream of 

the blade in a region of uniform flow of mean velocity U*00'. We specify the vector 
components (x1.x2.x3) such that X] is parallel to the mean flow U^, X2 is normal to the 
mean flow, and X3 is in the spanwise direction. The gradients of the drift functions X2 and 
X3 are given by  

(9) 

VJIf,=— n        VX,=i 2    JJ 3 

and so the Lamb vector can be evaluated using (5) and (9) as 
(10) 

(Q)xU) = f/„ftj(")z + f/^")n 
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This is an important result because it shows how the source term for the boundary 
element method can be specified in terms of the vorticity far upstream of the blade where 
the mean flow is uniform. The Lamb vector has two components, one that is in the 
spanwise direction and one that is normal to the span. Further simplification is possible if 
we limit consideration to the net unsteady loading on the blade, which can be obtained 
from the spanwise integral of the potential given by (4). We find 

(II) 

\<p(x)H(J)dx3 =   f   f t/.af >(X(y) -U(M)0 /* ~^}  dV(y)dx3 J J j 4JI y-x span span V€ • » • 

+  J   f £/<>(X(y) - U<">/)  (y "X)*  dV(y)dx, 
JLv, 4*|y-x| 

+ J J <p(y)}y~x)\dS(y)dxi 
JLs 4n|y-x| 

For blades of infinite span for which end effects are negligible the first integral on the 
right hand side of (11) is zero because for each value of vj the integrand over x$ is zero. 
The panel source strength when integrated over the span will therefore only depend on 
the spanwise component of the vorticity. Hence the unsteady loading, which is derived 
from the panel source strength, will also only depend on C03. The problem of modeling a 
turbulent inflow for numerical calculations is therefore greatly simplified because only 
one component of the vorticity contributes to the unsteady lift. Calculating the blade 
response to the spanwise component of a vortical gust will give all the information 
required to specify the response to a more general vorticafgust. 

Another feature of this result is that the unsteady loading on the blade can be calculated 
from the response of a two dimensional airfoil to the spanwise average of the spanwise 
vorticity component. This greatly simplifies the numerical cost of doing the calculation 
for the unsteady loading, which can be important for high frequency noise calculations, 
even for very simple systems. The analytical method given in Part A can be used for this 
purpose, and the numerical results presented here were computed using this approach 
because it was numerically more efficient, and the results agreed closely with the 
calculations based on the boundary element method. 

3.0 Blade Turbulence Interactions 

The problem of applying boundary element methods to turbulent flows identified by 
Grace[2] is greatly reduced by using the results of the analysis above. For blades of large 
span in a uniform mean flow we have shown that the unsteady loading can be calculated 
from the spanwise average of the spanwise vorticity component and the response to a two 
dimensional blade vortex interaction. In this section we will show how the response 
function can be coupled to the wavenumber spectrum of the upstream turbulence. 
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Following the approach used by Amiet[3] the unsteady loading caused by a turbulent 
inflow can be obtained from the response of the blade to a harmonic gust. In general the 
vorticity in the flow can be expressed in terms of its wavenumber transform 

(12) 

;")(V)=1 1   J (Kk1,k2,k3)e-i*ll,cl-u"')-lt2X2-'i3X3dk1dk2dk3 (O 

in the region of flow far upstream of the blade where the flow is uniform. Since the 
response is linear the unsteady loading can be obtained by superimposing the response of 
the blade to harmonic gusts of amplitude a(ki,k2,k3). The unsteady loading depends on the 
spanwise average of the vorticity, which for each harmonic component will be 
2iia{ki,k2,k3)S(k3)exp(-iki(xi-Uaot)-ik2X2). If the unsteady loading in response to a 
harmonic gust is S(ki,k2) , then the time history of the complete response is 

(13) 

L(t) = 2n]  ) a(Lk1,k2,0)S(kl,k2)e'kfJ*'t&ldk2 

and the loading in the frequency domain is 
(14) 

L(a>) = ^] a{ko,k2,0)S{ko,k2)dk2 
00   —00 

withJt0=-ct*/l/a,. For time domain calculations it is more numerically efficient to consider 
a gust of the form 

(15) 
exp(-ik '2X2) S(xj- Uaot) 

which has the wavenumber transform a(ko,k2,0)=2RsS(k2-k'2)/(2ii)2 where 2R} is the span 
of the blade. The time history of the unsteady loading from this gust is given by 

(16) 

M'>*2) = ^r-] S^k^e'^'dk, 
2n __, 

and taking the Fourier transform of this with respect to time gives 

2/? 
(17) 

2nUx 00 

The unsteady loading in the frequency domain can then be calculated as 

L(a» = (2n)>]  «K,KMMK) ^ 

This leads to the unsteady loading spectrum which is defined as 

(18) 

(19) 
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5ii(fi,) = ^p(fi,)|
2]=(2n)4]  J jEx[a(ko,k2,0)a(ko,k'2,0)p^^dk2dk' 

—CO       —CO 

The turbulence is defined in a region of dimension 2R/x2R2x2Rs and the averaging time is 
2T=2Ri/Ux we can simplify this integral using 

(20) 

j^Ex[a(ko,k2,0)a(ko,k'2,0)]^nn(ko,k2,0)S(k2-k'2) 

where O33 is the wavenumber spectrum of the vorticity which can be defined in terms of 
the energy spectrum of the turbulence, Qn(k0,k2,Q)=E(k)/4z with k=(kj+k22)u2 (E(k) is 
given for example by Amiet[3]). The final result is 

(21) 

suXa>) = i6n3u„R,] n33(*o,*2,o)i^^</*2 
^0 (2^3> 

The far field noise is calculated from the unsteady loading spectrum in the usual way 
giving, at a distance r from the blade, and at an angle 9 to the direction of the unsteady 
loading, the sound spectrum as Spp(co)=(cocos&4itrcc)2SLL(co) where c0 is the speed of 
sound. 

The procedure for calculating the far field sound is therefore to compute the unsteady 
loading time history Tor a-twa<iimensional blade {whieh gives the-unsteady loading per 
unit span) for a set of elemental vortices which are initiated at different heights X2 above 
the stagnation streamline and convected past the blade. The resulting time histories are 
Fourier transformed with respect to time and multiplied by exp(-/'^x^) and integrated over 
X2 to obtain Lt(a>,k2)/2R3. The result is then used in (21) to obtain the unsteady loading 
spectrum. 

4.0 Numerical Results 

In order to verify the numerical accuracy of the procedures described in the previous 
sections a test was carried out to compare the broadband noise spectrum calculated 
numerically with the analytical calculation for a flat plate given by Amiet[3]. The 
numerical calculation was carried out for an airfoil with 1% thickness to chord ratio and 
zero angle of attack. The blade chord is 0.91m and the turbulence lengthscale was 0.0912 
of the blade chord. The flow speed was 30m/s and the turbulence intensity was 4%. The~ 
results of this calculation are shown in Fig. 1 and give the l/3rd octave band Sound 
Pressure Level of the radiated noise (narrow band spectra, given by (19), have been 
corrected by a factor of 2(0.23co) to account for the l/3rd octave band filter). Results are 
presented as Sound Pressure Levels in dB re 20 microPa measured directly above the 
airfoil at a distance of 1.82m. The time stepping on for the lift response calculation is 
given in non-dimensional steps of 2AtU/c=0.0037 for 16392 points, and 200 discrete 
vortex elements were equally spaced from one chord above the stagnation streamline to 
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one chord below the stagnation streamline. The results indicate that for this example the 
numerical method is accurate, with a small error at high frequencies. 

10 10 10 
Reduced Frequency wc/2U 

Figure 1: Numerical calculations for a flat plate compared to Amiets theory for a turbulent inflow with an 
integral lengthscale L/c=0.0922. solid line, numerical calculation, — Amiets theory, -.-.-. numerical 
calculation using time history of upwash gust. 

10 10 10 
Reduced Frequency OK/21) 

Figure 2: Numerical calculations for a flat plate compared to Amiets theory for a turbulent inflow with an 
integral lengthscale L/c=0.415. solid line: numerical calculation, — Amiets theory, -.-.-. numerical 
calculation using time history of upwash gust. 

However if all parameters remain the same and the chord is reduced to 0.2m, so the 
turbulence lengthscale becomes 0.415 of the blade chord, then the accuracy of the 
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numerical calculation is reduced as shown in Fig. 2. The errors occur at low frequencies 
and cause a predicted level which exceeds the analytical level by a few dB. Also shown 
in Figs 1 and 2 are the numerical calculations of the radiated noise obtained from the time 
history of the upwash gust at the leading edge of the blade induced by the array of 
discrete vortices. Numerically Fourier transforming the upwash gust and multiplying it by 
Sears function gives the unsteady loading for each vortex element. The analysis in section 
3 can then be used to calculate the radiated noise and provides a method for identifying if 
the source of the numerical error is from the unsteady loading calculation or the modeling 
of the gust. This calculation agrees with the calculation based on the full numerical 
evaluation of the unsteady pressure, and so we conclude that the source of the numerical 
error is due to the modeling of the gust, not the calculation of the blade response. 

To show the effect of angle of attack and blade thickness on the radiated noise 
calculations were carried out for an airfoil with a thickness to chord ratio of 12% at angle 
of attack of 0 deg and 10 deg. The results, shown in Fig. 3 for the parameters used in Fig. 
1, demonstrate that the effect of angle of attack is small, but that the effect of blade 
thickness is to reduce the spectral level at high frequencies by a large amount. This result 
is consistent with the analytical results of Howe[6], Gerschfeld[7] and Part A of this 
report but we believe that this is the first time that this calculation has been done for a 
real airfoil shape in a turbulent flow. The physical explanation for these effects are given 
in Part A of this report who show that the effect of angle of attack on the response of an 
airfoil to a symmetric gust is to rotate the direction of the unsteady loading vector with 
out altering its magnitude. 

301 0 
10 10 

Reduced Frequency <oc/2V 
10 

Figure 3: The third octave spectra for the 36" NACA 0012 airfoil, o measured data for 0 deg angle of 
attack, * measured data for lOdeg angle of attack, lines show predicted levels for 12% thick airfoils and 
Amiet's theory for a flat plate. 

The numerical results shown in Fig. 3 confirm this finding. In contrast the analytical 
results show that the effect of increasing the blade thickness is to smooth the blade 
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response as the gust passes the leading edge of the airfoil, and this reduces the high 
frequency content of the loading noise, as indicated in Fig. 3. 

5.0 Comparison With Experimental Measurements 

Calculations of the unsteady loading on several different airfoils have been compared 
with new wind tunnel measurements taken in the Virginia Tech Stability Wind Tunnel. 
The wind tunnel combines a large test section (6' x 6' x 24') and wide speed range (0 to 
80m/s). The facility can be configured for aerodynamic measurements in a hard-wall test 
section or in aeroacoustic configuration which includes an acoustically treated half open 
jet test section and surrounding anechoic chamber (26' x 18' x 12'). In aeroacoustic 
configuration the facility is capable of running a conventional jet catcher system, but it is 
normally configured to use large Kevlar acoustic windows to contain the jet flow while 
allowing acoustic transmission into the anechoic chamber. The Kevlar walls allow near 
and far-field acoustic measurements with much less aerodynamic interference than is 
present in open jet configuration. Other acoustic window materials, such as 
polypropylene mesh and light impermeable nylon can also be mounted. A full description 
of these measurements are presented in [13]. 

Measurements were made of the far field radiated noise for five different airfoils with 
thickness to chord ratios of 12% and 15%, with 0.203m, 0.610m and 0.914m chords. The 
inflow turbulence had a lengthscale of 0.084m in and a turbulence intensity of 4%. The 
tunnel flow speed was 30 m/s, and the acoustic measurements were made 1.8m directly 
above the airfoil (as in the example discussed in section 4). Note that the measured 
spectra may reflect some influence of the response of the anechoic chambers below 
150Hz which has not yet been corrected for. This corresponds to reduced frequencies of 3 
and 14 for the 0.203 and 0.914-m chord foils respectively. 

Fig. 3 shows the comparison of the calculations with the measurements for the 12% thick 
NACA 0012 airfoil with a chord of 0.912m for angles of attack 0 deg and lOdeg. The 
measurements agree well with the numerical calculations, and although there is a small 
error the measurements confirm the reduction of high frequency sound levels for the 12% 
thick airfoil compared to the flat plate. For non dimensional frequencies above 10 this 
reduction is substantial. 

To confirm these results Fig. 4 shows the measurements and calculations for a NACA 
0012 airfoil with a chord of 0.203m. In this case the angle of attack at high frequencies 
does not appear to have any effect, and the measured change in level is predicted by the 
numerical calculations. However the absolute level prediction is not as good as for the 
large airfoil, but the differences between the measurements and the predictions are 
consistent with the numerical computation error discussed in section 4. 
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Figure 4:The third octave spectra for the 8" NACA 0012 airfoil, o measured data for 0 deg angle of attack, 
* measured data for 8deg angle of attack, lines show predicted levels for 12% thick airfoils and Amiet's 
theory for a flat plate 

6.0 Conclusions 

This paper has considered the prediction of broadband noise from airfoils of arbitrary 
shape subject to a turbulent inflow. It has been shown how a time domain approach based 
on a boundary element method can be used to predict the radiated noise. An important 
feature is the simplification of the inflow turbulence description for blades of large span 
in a uniform potential flow. It was shown that only the spanwise average of the spanwise 
component of the inflow vorticity is required to make far field noise predictions, and that 
a two dimensional blade response code could be used. 

Numerical calculation were compared to wind tunnel measurements with some success 
and it was shown both experimentally and numerically that the effect of angle of attack 
on the radiated noise level was very small. However blade thickness reduces the high 
frequency content of the blade response and hence the high frequency content of the 
radiated noise spectrum. 
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